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Abstract

This paper addresses the challenge of detecting illicit
activity in Bitcoin transaction networks. We use the El-
liptic dataset containing Bitcoin transactions labeled as
licit, illicit, or unknown. We apply Graph Neural Net-
work (GNN) models to classify unlabeled nodes in this
transaction graph. Our focus is not only on achieving
high accuracy but also on preserving critical structural
properties of the transaction networks. We compare dif-
ferent GNN models including GraphSAGE and Graph
Attention Networks (GAT) on both classification per-
formance and graph structure preservation. Our results
show that models which better preserve the structural
properties of legitimate transaction networks achieve
significantly higher test accuracy. Specifically, we find
that GraphSAGE’s neighborhood sampling approach
maintains critical transaction patterns better than GAT’s
attention mechanism. This study demonstrates the im-
portance of preserving authentic network topology for
reliable fraud detection in cryptocurrency networks.

Introduction
Bitcoin and other cryptocurrencies have become popular for
both legitimate financial activities and illicit transactions.
Detecting illegal activities on cryptocurrency blockchains is
challenging because of the pseudonymous nature of transac-
tions and the large volume of data. Traditional methods often
fail to capture the complex relationships between transac-
tions.

In this project, we use Graph Neural Networks (GNNs) to
classify Bitcoin transactions as licit or illicit. We focus on
both the accuracy of classification and how well the mod-
els preserve important structural properties of the transac-
tion network. This is important because models that distort
the network structure might not generalize well to real-world
applications.

The project uses data from Elliptic, a blockchain analytics
company. The dataset includes 203,769 Bitcoin transactions
(nodes) and 234,355 transaction flows (edges). Each trans-
action is labeled as licit (20.6%), illicit (2.2%), or unknown
(77.2%). Each node has 166 features describing transaction
characteristics.
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Our main contributions are:

• Implementation and comparison of different GNN models
for Bitcoin transaction classification

• Analysis of how well different models preserve important
graph properties

• Introduction of a new metric called ”distance-to-ideal” for
evaluating model reliability

• Evidence that structural preservation correlates with clas-
sification performance

Data and Preprocessing
The Elliptic Dataset
The dataset represents Bitcoin transactions over 49 time
steps. Each node is a transaction, and edges represent Bit-
coin flows between addresses. The 166 features per node in-
clude:

• Transaction-level statistics (time, amount)

• Aggregated metrics over time (degree, centrality)

The class distribution shows a significant imbalance:

• Licit: 20.6% - Legitimate transactions not associated with
criminal activity

• Illicit: 2.2% - Transactions linked to illegal activity

• Unknown: 77.2% - Transactions in the dataset but not la-
beled

Preprocessing Steps
We performed the following preprocessing steps:

• Extracted node features and edge lists from different CSV
files

• Mapped transaction IDs to indices to make data compati-
ble with PyTorch Geometric

• Separated the graph into different sets: Known (Train, Val,
Test) and Unknown

Exploratory Analysis
Our exploratory data analysis revealed several important
graph properties:



• Degree distribution. Both in-degree and out-degree ex-
hibit a power-law tail—typical of financial networks (see
Fig. 1).

• Community Detection: Using the Louvain algorithm, we
identified transaction clusters that might indicate coordi-
nated behavior

• Network Structure: One dominant connected component
contains the majority of labeled transactions

Figure 1: Degree distribution plotted on a log–log scale. The
heavy-tailed pattern (few hubs, many low-degree nodes) is
consistent with a scale-free transaction network.

Methodology
Our methodology consists of three main parts:

1. Direct classification with base models
2. Data augmentation with base models or label propagation
3. Graph property preservation analysis

Base Models
We implemented two GNN architectures:
• GraphSAGE: Uses neighborhood sampling to aggregate

information from nearby nodes
• GAT (Graph Attention Network): Uses attention mecha-

nisms to weight the importance of neighboring nodes

Figure 2: Training–loss (left) and accuracy (right) curves for
the base sage model over 200 epochs.

Both models were trained on the original training set and
used to predict labels for all unknown nodes.

Data Augmentation
We created augmented training sets by adding 30% of un-
known nodes with predicted labels to the original training
set. We used three augmentation strategies:
• Label Propagation Augmentation: Using label propaga-

tion algorithm
• GraphSAGE-based Augmentation: Using labels predicted

by GraphSAGE
• GAT-based Augmentation: Using labels predicted by

GAT
For each augmentation strategy, we trained both Graph-

SAGE and GAT models on the augmented data, resulting in
a total of 8 models:
• base sage and base gat
• label propagation sage and label propagation gat
• sage sage and sage gat
• gat sage and gat gat

Figure 3: Training–loss (left) and accuracy (right) curves for
the gat sage model over 200 epochs.

Figure 4: Training–loss (left) and accuracy (right) curves for
the label propagation gat pipeline over 200 epochs.

Graph-Property Preservation Analysis
A robust detector must not only label individual nodes cor-
rectly, but also reproduce the structural “fingerprints” of
licit and illicit transaction networks. To quantify, for each
model, how far its predicted subgraphs stray from the
training-set profile, we use the three-step procedure as de-
scribed below.

1. Compute six structural metrics for every licit & illicit
subgraph.



Homophily
Propensity for same-class links, estimated by the
edge-to-node ratio within each class (higher ⇒ denser
clusters of similar transactions).
Density
Overall link density 2|E|

|V |(|V |−1) ; low density may signal
isolated, covert activity, whereas high density reflects nor-
mal market traffic.
Average Clustering Coefficient
Mean local triangle ratio, highlighting how tightly nodes
group into communities.
Average Degree Centrality
Mean normalised degree, i.e., how many counterparties a
typical node transacts with.
Average Betweenness Centrality
Mean brokerage score that reveals bridge
nodes—potential “money-mule” behaviour.
Largest-Component Ratio
Fraction |VLCC|/|V | of nodes in the giant component,
measuring fragmentation.

2. Build an ideal baseline via bootstrap. We sample 70%
of the training nodes Nboot = 10 times, recompute the six
metrics, and record the bootstrap mean vtrain and stan-
dard deviation σboot for each metric—capturing the nat-
ural, data-driven variance under perfect predictions.

3. Measure the distance to ideal. For a predicted metric
vpred we first compute

Sraw =


1, vpred = vtrain = 0,

0, vpredvtrain = 0,

1−min
( |vpred−vtrain|
max(|vpred|,|vtrain|)

, 1
)
, otherwise.

(1)

Snorm =


1, σboot = 0 ∧ ∆ = 0,

0, σboot = 0 ∧ ∆ > 0,

max
(
0, 1−min

(
∆

3σboot
, 1
))

, otherwise,
(2)

where ∆ = |vpred − vtrain|. The single-metric distance to
ideal is D = |Snorm−1|; we average six such D’s to obtain
Dlicit, Dillicit and report Dcombined = 1

2 (Dlicit +Dillicit).

Interpretation. A perfect classifier gives Dcombined ≈ 0,
i.e. its predicted licit/illicit subgraphs are statistically indis-
tinguishable from the real ones after accounting for natural
variation. Higher values warn that node-level accuracy may
conceal topological artefacts relevant to downstream foren-
sic tasks.

Results
Model Performance
According to Table 1, our evaluation of the eight models
showed varying levels of performance:
• Best Test Accuracy: base sage (97.4%)

Model Final Training Loss ↓ Validation Accuracy ↑ Test Accuracy ↑

base gat 0.272 0.921 0.921
base sage 0.090 0.977 0.974
label propagation gat 0.239 0.912 0.907
label propagation sage 0.110 0.964 0.965
gat gat 0.182 0.906 0.918
gat sage 0.047 0.974 0.970
sage gat 0.188 0.910 0.916
sage sage 0.049 0.973 0.970

Table 1: Model Performance: Train, Val, Test

• Best Validation Accuracy: base sage (97.7%)

• Lowest Training Loss: gat sage (0.047)

Overall, models using GraphSAGE consistently outper-
formed GAT-based models in terms of classification accu-
racy.

Structure Preservation Analysis
According to observe Figure 1, the distance-to-ideal metric
revealed interesting patterns:

• Models that better preserved licit network structure
achieved significantly higher test accuracy

• We found a strong negative correlation between licit struc-
ture preservation and test accuracy (r = -0.99, p = 0.0002)

• There was a moderate correlation for illicit preservation
(r = -0.56, p = 0.25)

This suggests that maintaining the structural properties of
legitimate transaction networks is particularly important for
accurate classification.

Why GraphSAGE Performs Better
GraphSAGE models better preserved graph properties com-
pared to GAT models for several reasons:

• Neighborhood Aggregation: GraphSAGE uses uniform
sampling of neighbors, treating all connections equally,
which helps maintain network structure

• Parameter Complexity: GAT’s attention mechanisms have
more parameters that can lead to overfitting and structure
distortion

• Structural Stability: GraphSAGE maintains better consis-
tency between properties of known and unknown nodes

These characteristics make GraphSAGE more suitable for
financial transaction networks where preserving structural
patterns is crucial.

Conclusion
Our research demonstrates that preserving authentic net-
work topology is critical for reliable fraud detection in cryp-
tocurrency networks. The strong correlation between struc-
ture preservation and classification accuracy suggests that
this should be a key consideration when developing models
for financial fraud detection.

Key findings from our work include:



Figure 5: Correlation between distance-to-ideal metrics and
test accuracy. Left: licit subgraph; Middle: illicit subgraph;
Right: combined distance.

• The proposed distance-to-ideal metric provides a valu-
able complementary evaluation beyond traditional accu-
racy measures

• GraphSAGE’s neighborhood sampling preserves essential
graph properties more effectively than GAT’s attention
mechanism

• Preserving licit subgraph structure is more indicative of
model reliability than preserving illicit patterns
Future work could extend this approach to temporal net-

works, develop structure-optimized models, improve ex-
plainability, and scale to larger cryptocurrency datasets.
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